IMPORTANT FORMULAES

$CLASS - 12$

1. Relations & Functions

Definition/Theorems

- Empty relation holds a specific relation R in X as: **R = φ** ⊂ **X × X**.
- A Symmetric relation R in X satisfies a certain relation as: **(a, b)** ∈ **R implies (b, a)** ∈ **R**.
- A Reflexive relation R in X can be given as: **(a, a)** ∈ **R; for all** ∀ **a** ∈ **X**.
- A Transitive relation R in X can be given as: **(a, b)** ∈ **R and (b, c)** ∈ **R, thereby, implying (a, c)** $∈$ **R**.
- A Universal relation is the relation R in X can be given by $R = X \times X$.
- Equivalence relation R in X is a relation that shows all the reflexive, symmetric and transitive relations.

Properties

- A function f: $X \to Y$ is one-one/injective; if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \forall x_1, x_2 \in X$.
- A function f: $X \to Y$ is onto/surjective; if given any $y \in Y$, $\exists x \in X$ such that $f(x) = y$.
- A function f: $X \rightarrow Y$ is one-one and onto or bijective; if f follows both the one-one and onto properties.
- A function f: $X \to Y$ is invertible if $\exists g: Y \to X$ such that gof = I_X and fog = I_Y . This can happen only if f is one-one and onto.
- A binary operation ∗∗ performed on a set A is a function ∗∗ from A × A to A.
- An element e \in X possess the identity element for binary operation ** : X × X \rightarrow X, if a ∗∗ e = a = e ∗∗ a; ∀ a ∈ X.
- An element a \in X shows the invertible property for binary operation $**$: $X \times X \rightarrow X$, if there exists b \in X such that a $**$ b = e = b $**$ a where e is said to be the identity for the binary operation ∗∗. The element b is called the inverse of a and is denoted by a– 1 .
- An operation ∗∗ on X is said to be commutative if a ∗∗ b = b ∗∗ a; ∀ a, b in X.
- An operation ∗∗ on X is said to associative if (a ∗∗ b) ∗∗ c = a ∗∗ (b ∗∗ c); ∀ a, b, c in X.

2. Inverse Trigonometric Functions

Properties/Theorems

The domain and range of inverse trigonometric functions are given below:

Formulas

- $y=sin^{-1}x \Rightarrow x=sin y$
- \bullet x=sin y \Rightarrow y=sin⁻¹x
- \cdot sin⁻¹1/x=cosec⁻¹X
- \bullet $\cos^{-1}1/x = \sec^{-1}x$
- \bullet tan⁻¹1/x=cot⁻¹X
- $\cos^{-1}(-x) = \pi \cos^{-1}x$
- cot⁻¹ (−x)= π -cot⁻¹x
- $sec^{-1}(-x)=\pi sec^{-1}x$
- $\sin^{-1}(-x) = -\sin^{-1}x$
- $\tan^{-1}(-x) = -\tan^{-1}x$
- $cosec^{-1}$ (-x)=- $cosec^{-1}x$
- \cdot tan⁻¹x+cot⁻¹x=π/2
- \cdot sin⁻¹x+cos⁻¹x=π/2
- \cdot cosec⁻¹x+sec⁻¹x=π/2
- $tan^{-1}x+tan^{-1}y=tan^{-1}x+y/1-xy$
- 2tan⁻¹x=sin⁻¹2x/1+x² = cos⁻¹1-x²/1+x²
- 2tan⁻¹x=tan⁻¹2x/1−x²
- $tan^{-1}x + tan^{-1}y = π + tan^{-1}(x+y/1-xy)$; xy > 1; x, y > 0

3. Matrices

Definition/Theorems

- A matrix is said to have an ordered rectangular array of functions or numbers. A matrix of order $m \times n$ consists of m rows and n columns.
- An m \times n matrix will be known as a square matrix when m = n.
- A = $[a_{ij}]_{m \times m}$ will be known as diagonal matrix if $a_{ij} = 0$, when $i \neq j$.
- A = $[a_{ij}]_{n \times n}$ is a scalar matrix if $a_{ij} = 0$, when $i \neq j$, $a_{ij} = k$, (where k is some constant); and $i = i$.
- A = $[a_{ii}]_{n \times n}$ is an identity matrix, if $a_{ii} = 1$, when $i = j$ and $a_{ii} = 0$, when $i \neq j$.
- A zero matrix will contain all its element as zero.
- \bullet A = $[a_{ii}] = [b_{ii}] = B$ if and only if:
	- 1. (i) A and B are of the same order
	- 2. (ii) $a_{ij} = b_{ij}$ for all the certain values of i and j

Elementary Operations

- Some basic operations of matrices:
	- 1. (i) $kA = k[a_{ii}]_{m \times n} = [k(a_{ii})]_{m \times n}$
	- 2. (ii) A = (-1) A
	- 3. (iii) $A B = A + (-1)B$
	- 4. (iv) $A + B = B + A$
	- 5. (v) $(A + B) + C = A + (B + C)$; where A, B and C all are of the same order
	- 6. (vi) $k(A + B) = kA + kB$; where A and B are of the same order; k is constant
	- 7. (vii) $(k + 1)A = kA + IA$; where k and I are the constant
- If $A = [a_{ij}]_{m \times n}$ and $B = [b_{jk}]_{n \times p}$, then AB = C = $[c_{ik}]_{m \times p}$; where c_{ik} = \sum nj=1aijbjk \sum j=1naijbjk
	- 1. (i) $A.(BC) = (AB).C$
	- 2. (ii) $A(B + C) = AB + AC$
	- 3. (iii) $(A + B)C = AC + BC$
- If A= $[a_{ii}]_{m \times n}$, then A' or AT = $[a_{ii}]_{n \times m}$
	- 1. (i) $(A')' = A$
	- 2. (ii) $(kA)' = kA'$
- 3. (iii) $(A + B)' = A' + B'$
- 4. (iv) $(AB)' = B'A'$
- Some elementary operations:
	- 1. (i) $R_i \leftrightarrow R_i$ or $C_i \leftrightarrow C_i$
	- 2. (ii) $R_i \rightarrow kR_i$ or $C_i \rightarrow kC_i$
	- 3. (iii) $R_i \rightarrow R_i + kR_i$ or $C_i \rightarrow C_i + kC_i$
- A is said to known as a symmetric matrix if $A' = A$
- A is said to be the skew symmetric matrix if $A' = -A$

4. Determinants

Definition/Theorems

- The determinant of a matrix $A = [a_{11}]_{1 \times 1}$ can be given as: $|a_{11}| = a_{11}$.
- For any square matrix A, the |A| will satisfy the following properties:
	- 1. $|A'| = |A|$, where A' = transpose of A.
	- 2. If we interchange any two rows (or columns), then sign of determinant changes.
	- 3. If any two rows or any two columns are identical or proportional, then the value of the determinant is zero.
	- 4. If we multiply each element of a row or a column of a determinant by constant k, then the value of the determinant is multiplied by k.

Formulas

Determinant of a matrix

$$
A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}
$$
 can be expanded as:

$$
|A| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}
$$

• Area of triangle with vertices (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is:

$$
\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}
$$

- Cofactor of aij of given by $A_{ii} = (-1)^{i+j} M_{ii}$
- \bullet If

$$
A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}_{\text{then,}}
$$

adj $A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}_{\text{where } A_{ij} \text{ is the cofactor of } a_{ij}.$

- $A^{-1}=(1/|A|)(adjA)$
- If $a_1x + b_1y + c_1z = d_1 a_2x + b_2y + c_2z = d_2 a_3x + b_3 y + c_3z = d_3$, then these equations can be written as $AX = B$, where:

$$
A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \times \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}
$$

- For a square matrix A in matrix equation $AX = B$
	- 1. (i) $|A| \neq 0$, there exists unique solution
	- 2. (ii) $|A| = 0$ and (adj A) $B \ne 0$, then there exists no solution
	- 3. (iii) $|A| = 0$ and (adj A) B = 0, then the system may or may not be consistent.

5. Continuity and Differentiability

Definition/Properties

- A function is said to be continuous at a given point if the limit of that function at the point is equal to the value of the function at the same point.
- Properties related to the functions:
	- o (i) $(f\pm g)(x)=f(x)\pm g(x)$ is continuous.
	- o (ii) $(f.g)(x)=f(x).g(x)$ is continuous.
	- o (iii) $f/g(x)=f(x)/g(x)$ (whenever $g(x) \neq 0$ g(x)≠0 is continuous.
- **Chain Rule:** If $f = v$ o u, $t = u(x)$ and if both dt/dx and dv/dx exists, then:

df/dx=dv/dt.dt/dx

• Rolle's Theorem: If f: [a, b] \rightarrow R is continuous on [a, b] and differentiable on (a, b) where as $f(a) = f(b)$, then there exists some c in (a, b) such that $f'(c) = 0$.

• **Mean Value Theorem:** If $f : [a, b] \rightarrow R$ is continuous on [a, b] and differentiable on (a, b). Then there exists some c in (a, b) such that

f′(c)=f(b)−f(a)/b−a

Formulas

Given below are the standard derivatives:

6. Integrals

Definition/Properties

- Integration is the inverse process of differentiation. Suppose, $d/dxF(x)=f(x)$; then we can write / $\int f(x)dx=F(x)+C$
- Properties of indefinite integrals:
	- o (i) ∫[f(x)+g(x)]dx=∫f(x)dx+∫g(x)dx
	- o (ii) For any real number k, ∫kf(x)dx=k∫f(x)dx
	- o (iii) ∫[k1f1(x)+k2f2(x)+…+knfn(x)]dx=k1∫f1(x)dx+k2∫f2(x)dx+…+k $n\int f_n(x)dx$
- **First fundamental theorem of integral calculus:** Let the area function be defined as: A(x)=∫a^xf(x)dx for all x≥a, where the function f is assumed to be continuous on [a, b]. Then A' $(x) = f(x)$ for every $x \in [a, b]$.
- **Second fundamental theorem of integral calculus:** Let f be the certain continuous function of x defined on the closed interval [a, b]; Furthermore, let's assume F another function as: $d/dxF(x)=f(x)$ for every x falling in the domain of f; then,

$$
\int_{a}^{b} f(x) dx = [F(x)+C]_{a}^{b} = F(b)-F(a)
$$

Formulas – Standard Integrals

1.
$$
\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1
$$
. Particularly, $\int dx = x + C$)
\n2. $\int \cos x dx = \sin x + C$
\n3. $\int \sin x dx = -\cos x + C$
\n4. $\int \sec^2 x dx = \tan x + C$
\n5. $\int \csc^2 x dx = -\cot x + C$
\n6. $\int \sec x \tan x dx = \sec x + C$
\n7. $\int \csc x \cot x dx = -\csc x + C$
\n8. $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + C$
\n9. $\int \frac{dx}{\sqrt{1-x^2}} = -\cos^{-1}x + C$
\n10. $\int \frac{dx}{1+x^2} = \tan^{-1}x + C$
\n11. $\int \frac{dx}{1+x^2} = -\cot^{-1}x + C$
\n12. $\int e^x dx = e^x + C$
\n13. $\int a^x dx = \frac{a^x}{\log a} + C$
\n14. $\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1}x + C$
\n15. $\int \frac{dx}{x\sqrt{x^2-1}} = -\csc^{-1}x + C$
\n16. $\int \frac{1}{x} dx = \log |x| + C$

Formulas - Partial Fractions

Formulas – Integration by Substitution

- 1. ∫tanxdx=log|secx|+C
- 2. ∫cotxdx=log|sinx|+C
- 3. ∫secxdx=log|secx+tanx|+C
- 4. ∫cosecxdx=log|cosecx−cotx|+C

Formulas - Integrals (Special Functions)

1.
$$
\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x-a}{x+a} \right| + C
$$

\n2.
$$
\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a+x}{a-x} \right| + C
$$

\n3.
$$
\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C
$$

\n4.
$$
\int \frac{dx}{\sqrt{x^2 - a^2}} = \log |x + \sqrt{x^2 - a^2}| + C
$$

\n5.
$$
\int \frac{dx}{\sqrt{x^2 + a^2}} = \log |x + \sqrt{x^2 + a^2}| + C
$$

\n6.
$$
\int \frac{dx}{\sqrt{x^2 - a^2}} = \sin^{-1} \frac{x}{a} + C
$$

Formulas – Integration by Parts

- 1. The integral of the product of two functions = first function \times integral of the second function – integral of {differential coefficient of the first function \times integral of the second function} ∫f1(x).f2(x)=f1(x)∫f2(x)dx−∫[ddxf1(x).∫f2(x)dx]dx
- 2. $[ex[f(x)+f'(x)]dx=[exf(x)dx+C$

Formulas - Special Integrals

1. $\int \sqrt{x^2-a^2} \ dx = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2} \log|x+\sqrt{x^2-a^2}| + C$ 2. $\int \sqrt{x^2+a^2} \ dx = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2} \log|x+\sqrt{x^2+a^2}| + C$ 3. $\int \sqrt{a^2-x^2} \ dx = \frac{x}{2}\sqrt{a^2-x^2} + \frac{a}{2}\sin^{-1}\frac{x}{a} + C$ 4. $ax^2 + bx + c = a\left[x^2 + \frac{b}{a}x + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2}\right)\right]$

7. Application of Integrals

1. The area enclosed by the curve $y = f(x)$; x-axis and the lines $x = a$ and x $= b$ (b > a) is given by the formula:

$$
4rea = \textstyle \int_a^b y\,dx = \int_a^b f(x)\,dx
$$

2. Area of the region bounded by the curve $x = \varphi(y)$ as its y-axis and the lines $y = c$, $y = d$ is given by the formula:

$$
Area = \int_c^d x\,dy = \int_c^d \phi(y)\,dy
$$

3. The area enclosed in between the two given curves $y = f(x)$, $y = g(x)$ and the lines $x = a$, $x = b$ is given by the following formula:

 $Area = \int_a^b [f(x) - g(x)] dx$, where, $f(x) \ge g(x)$ in [a, b]

4. If $f(x) \ge g(x)$ in [a, c] and $f(x) \le g(x)$ in [c, b], $a < c < b$, then: $Area = \int_{a}^{c} [f(x) - g(x)] dx + \int_{c}^{b} [g(x) - f(x)] dx$

8. Vector Algebra

Definition/Properties

1. Vector is a certain quantity that has both the magnitude and the direction. The position vector of a point $P(x, y, z)$ is given by:

$$
OP \rightarrow \left(\equiv r^{\rightarrow}) = xi^{\wedge} + yj^{\wedge} + zk^{\wedge}
$$

2. The scalar product of two given vectors $\vec{a} \rightarrow a$ and $\vec{b} \rightarrow b \rightarrow b$ having angle θ between them is defined as:

$$
a^{\rightarrow}.b^{\rightarrow} = |a^{\rightarrow}| |b^{\rightarrow}| \cos \theta
$$

- 3. The position vector of a point R dividing a line segment joining the points P and Q whose position vectors $a^2 a \rightarrow a$ and $b^2 b \rightarrow a$ re respectively, in the ratio m : n is given by:
- \circ (i) internally: $na^+ + mb^+ m + n$
- o (ii) externally: na[→] –mb[→] m–n

Formulas

If two vectors
$$
a^2 \rightarrow a
$$
 and $b^2 \rightarrow a$ are given in its component forms as $a^4 = a1^4 + a2^4 + a3k^4$ and $b^4 = b1^4 + b2^4 + b3k^4$ and λ as the scalar part; then:

(i)
$$
\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}
$$
;
\n(ii) $\lambda \vec{a} = (\lambda a_1)\hat{i} + (\lambda a_2)\hat{j} + (\lambda a_3)\hat{k}$;
\n(iii) $\vec{a} \cdot \vec{b} = (a_1b_1) + (a_2b_2) + (a_3b_3)$
\n(iv) and $\vec{a} \times \vec{b} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix}$.

9. Three dimensional Geometry

Definition/Properties

- Direction cosines of a line are the cosines of the angle made by a particular line with the positive directions on coordinate axes.
- Skew lines are lines in space which are neither parallel nor intersecting. These lines lie in separate planes.
- If l, m and n are the direction cosines of a line, then $1^2 + m^2 + n^2 =$ 1.

Formulas

1. The Direction cosines of a line joining two points P (x_1, y_1, z_1) and Q (x_2, y_1, z_1)

, y₂, z₂) are
$$
\frac{x_2 - x_1}{PQ}
$$
, $\frac{y_2 - y_1}{PQ}$, $\frac{z_2 - z_1}{PQ}$ where
 $PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$

- 2. Equation of a line through a point (x_1, y_1, z_1) and having direction cosines I, m, n is: $\frac{x - x_1}{l} = \frac{y - y_1}{m} = \frac{z - z_1}{n}$
- 3. The vector equation of a line which passes through two points whose position vectors \vec{a} and \vec{b} is $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a})$
- 4. The shortest distance between $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ is: $\left|\frac{\overrightarrow{b_1}\times\overrightarrow{b_2}.\overrightarrow{(a_2-a_1)}}{\overrightarrow{b_1}\times\overrightarrow{b_2}}\right|$
- 5. The distance between parallel lines $\vec{r} = \overrightarrow{a_1} + \lambda \vec{b}$ and $\vec{r} = \overrightarrow{a_2} + \mu \vec{b}$ is
 $\left| \frac{\vec{b} \times (\overrightarrow{a_2} \overrightarrow{a_1})}{|\vec{b}|} \right|$
- 6. The equation of a plane through a point whose position vector is \vec{a} and perpendicular to the vector \vec{N} is $(\vec{r}-\vec{a})$. $\vec{N}=0$
- 7. Equation of a plane perpendicular to a given line with direction ratios A, B, C and passing through a given point (x_1, y_1, z_1) is A $(x - x_1) + B(y - x_2)$ y_1 + C (z – z₁) = 0
- 8. The equation of a plane passing through three non-collinear points (x_1, y_2, y_3) y_1 , z_1); (x_2, y_2, z_2) and (x_3, y_3, z_3) is:

$$
\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0
$$

- 9. The two lines $\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ are coplanar if:
 $(\overrightarrow{a_2} \overrightarrow{a_1}) \cdot (\overrightarrow{b_1} \times \overrightarrow{b_2}) = 0$
- 10. The angle φ between the line $\vec{r} = \vec{a} + \lambda \vec{b}$ and the plane $\vec{r} \cdot \hat{n} = d$ is given by:

$$
sin \ \phi = \left| \frac{\vec{b} \cdot \hat{n}}{|\vec{b}||\hat{n}|} \right|
$$

11. The angle θ between the planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + D_1z$ $C_2z + D_2 = 0$ is given by:

$$
cos\ \theta = \left| \frac{A_1\ A_2 + B_1\ B_2 + C_1\ C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2}\ \sqrt{A_2^2 + B_2^2 + C_2^2}} \right|
$$

- 12. The distance of a point whose position vector is \vec{a} from the plane $\vec{r} \cdot \hat{n} = d$ is given by: $|d - \vec{a} \cdot \hat{n}|$
- 13. The distance from a point (x_1, y_1, z_1) to the plane $Ax + By + Cz + D = 0$:

$$
\left|\frac{Ax_1+By_1+Cz_1+D}{\sqrt{A^2+B^2+C^2}}\right|
$$

Probability 10.

Definition/Properties

1. The conditional probability of an event E holds the value of the occurrence of the event F as:

$$
P(E\,|\,F) = \tfrac{E\cap F}{P(F)}\ ,\ P(F) \neq 0
$$

2. Total Probability: Let E_1 , E_2 ,, E_n be the partition of a sample space and A be any event; then,

 $P(A) = P(E_1) P (A|E_1) + P (E_2) P (A|E_2) + ... + P (E_n) P (A|E_n)$

3. Bayes Theorem: If E_1 , E_2 ,, E_n are events contituting in a sample space S; then,

$$
P(E_i | A) = \frac{P(E_i) P(A | E_i)}{\sum_{j=1}^{n} P(E_j) P(A | E_j)}
$$

4. Var $(X) = E(X^2) - [E(X)]^2$