IMPORTANT FORMULAES

CLASS – 12

1. Relations & Functions

Definition/Theorems

- Empty relation holds a specific relation R in X as: $\mathbf{R} = \mathbf{\phi} \subset \mathbf{X} \times \mathbf{X}$.
- A Symmetric relation R in X satisfies a certain relation as: (a, b) ∈ R implies (b, a) ∈ R.
- A Reflexive relation R in X can be given as: (a, a) \in R; for all \forall a \in X.
- A Transitive relation R in X can be given as: (a, b) ∈ R and (b, c) ∈ R, thereby, implying (a, c) ∈ R.
- A Universal relation is the relation R in X can be given by $R = X \times X$.
- Equivalence relation R in X is a relation that shows all the reflexive, symmetric and transitive relations.

Properties

- A function f: $X \rightarrow Y$ is one-one/injective; if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \forall x_1, x_2 \in X$.
- A function f: $X \rightarrow Y$ is onto/surjective; if given any $y \in Y$, $\exists x \in X$ such that f(x) = y.
- A function f: X → Y is one-one and onto or bijective; if f follows both the one-one and onto properties.
- A function f: $X \rightarrow Y$ is invertible if $\exists g: Y \rightarrow X$ such that gof = I_X and fog = I_Y . This can happen only if f is one-one and onto.
- A binary operation ****** performed on a set A is a function ****** from A × A to A.
- An element e ∈ X possess the identity element for binary operation ** : X × X → X, if a ** e = a = e ** a; ∀ a ∈ X.
- An element a ∈ X shows the invertible property for binary operation ** : X × X → X, if there exists b ∈ X such that a ** b = e = b ** a where e is said to be the identity for the binary operation **. The element b is called the inverse of a and is denoted by a⁻¹.
- An operation ** on X is said to be commutative if a ** b = b ** a; \forall a, b in X.
- An operation ** on X is said to associative if (a ** b) ** c = a ** (b ** c); ∀ a, b, c in X.

2. Inverse Trigonometric Functions

Properties/Theorems

The domain and range of inverse trigonometric functions are given below:

Functions	Domain	Range
$y = sin^{-1} x$	[-1, 1]	[- <i>π</i> 2, <i>π</i> 2][- <i>π</i> 2, <i>π</i> 2]
$y = \cos^{-1} x$	[-1, 1]	[0,π][0,π]
$y = cosec^{-1} x$	R - (-1, 1)	$[-\pi 2, \pi 2][-\pi 2, \pi 2] - \{0\}$
$y = sec^{-1} x$	R – (–1, 1)	$[0,\pi][0,\pi] - \{\pi 2\pi 2\}$
y = tan ⁻¹ x	R	(-π2,π2)(- π 2 ,π 2)
$y = cot^{-1} x$	R	(0,π)(0,π)

Formulas

- $y=sin^{-1}x \Rightarrow x=sin y$
- $x=\sin y \Rightarrow y=\sin^{-1}x$
- $sin^{-1}1/x = cosec^{-1}x$
- $\cos^{-1}1/x = \sec^{-1}X$
- $tan^{-1}1/x = cot^{-1}x$
- $\cos^{-1}(-x) = \pi \cos^{-1}x$
- $\cot^{-1}(-x) = \pi \cot^{-1}x$
- $\sec^{-1}(-x) = \pi \sec^{-1}x$
- $\sin^{-1}(-x) = -\sin^{-1}x$
- $tan^{-1}(-x) = -tan^{-1}x$
- $\csc^{-1}(-x) = -\csc^{-1}x$
- $tan^{-1}x + cot^{-1}x = \pi/2$
- $\sin^{-1}x + \cos^{-1}x = \pi/2$
- $COSEC^{-1}X + SEC^{-1}X = \pi/2$
- $tan^{-1}x+tan^{-1}y=tan^{-1}x+y/1-xy$
- $2\tan^{-1}x = \sin^{-1}2x/1 + x^2 = \cos^{-1}1 x^2/1 + x^2$
- $2\tan^{-1}x = \tan^{-1}2x/1 x^2$
- $tan^{-1}x+tan^{-1}y=\pi+tan^{-1}(x+y/1-xy); xy > 1; x, y > 0$

3. Matrices

Definition/Theorems

- A matrix is said to have an ordered rectangular array of functions or numbers. A matrix of order m × n consists of m rows and n columns.
- An m × n matrix will be known as a square matrix when m = n.
- $A = [a_{ij}]_{m \times m}$ will be known as diagonal matrix if $a_{ij} = 0$, when $i \neq j$.
- A = [a_{ij}]_{n×n} is a scalar matrix if a_{ij} = 0, when i ≠ j, a_{ij} = k, (where k is some constant); and i = j.
- $A = [a_{ij}]_{n \times n}$ is an identity matrix, if $a_{ij} = 1$, when i = j and $a_{ij} = 0$, when $i \neq j$.
- A zero matrix will contain all its element as zero.
- $A = [a_{ij}] = [b_{ij}] = B$ if and only if:
 - 1. (i) A and B are of the same order
 - 2. (ii) $a_{ij} = b_{ij}$ for all the certain values of i and j

Elementary Operations

- Some basic operations of matrices:
 - 1. (i) $kA = k[a_{ij}]_{m \times n} = [k(a_{ij})]_{m \times n}$
 - 2. (ii) A = (– 1)A
 - 3. (iii) A − B = A + (− 1)B
 - 4. (iv) A + B = B + A
 - 5. (v) (A + B) + C = A + (B + C); where A, B and C all are of the same order
 - 6. (vi) k(A + B) = kA + kB; where A and B are of the same order; k is constant
 - 7. (vii) (k + I)A = kA + IA; where k and I are the constant
- If $A = [a_{ij}]_{m \times n}$ and $B = [b_{jk}]_{n \times p}$, then $AB = C = [c_{ik}]_{m \times p}$; where $c_{ik} = \sum nj=1aijbjk\sum j=1naijbjk$
 - 1. (i) A.(BC) = (AB).C
 - 2. (ii) A(B + C) = AB + AC
 - 3. (iii) (A + B)C = AC + BC
- If $A = [a_{ij}]_{m \times n}$, then A' or $AT = [a_{ji}]_{n \times m}$
 - 1. (i) (A')' = A
 - 2. (ii) (kA)' = kA'

- 3. (iii) (A + B)' = A' + B'
- 4. (iv) (AB)' = B'A'
- Some elementary operations:
 - 1. (i) $R_i \leftrightarrow R_j$ or $C_i \leftrightarrow C_j$
 - 2. (ii) $R_i \rightarrow kR_i$ or $C_i \rightarrow kC_i$
 - 3. (iii) $R_i \rightarrow R_i + kR_j$ or $C_i \rightarrow C_i + kC_j$
- A is said to known as a symmetric matrix if A' = A
- A is said to be the skew symmetric matrix if A' = -A

4. Determinants

Definition/Theorems

- The determinant of a matrix $A = [a_{11}]_{1 \times 1}$ can be given as: $|a_{11}| = a_{11}$.
- For any square matrix A, the |A| will satisfy the following properties:
 - 1. |A'| = |A|, where A' = transpose of A.
 - 2. If we interchange any two rows (or columns), then sign of determinant changes.
 - 3. If any two rows or any two columns are identical or proportional, then the value of the determinant is zero.
 - 4. If we multiply each element of a row or a column of a determinant by constant k, then the value of the determinant is multiplied by k.

Formulas

• Determinant of a matrix

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \text{ can be expanded as:}$$
$$|\mathsf{A}| = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & c_2 \\ b_3 & c_3 \end{vmatrix} - b_1 \begin{vmatrix} a_2 & c_2 \\ a_3 & c_3 \end{vmatrix} + c_1 \begin{vmatrix} a_2 & b_2 \\ a_3 & b_3 \end{vmatrix}$$

• Area of triangle with vertices (x_1, y_1) , (x_2, y_2) and (x_3, y_3) is:

$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

- Cofactor of aij of given by $A_{ij} = (-1)^{i+j} M_{ij}$
- If

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}_{\text{then,}}$$

adj A =
$$\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix}_{\text{where } A_{ij} \text{ is the cofactor of } a_{ij}.}$$

- A⁻¹=(1/|A|)(adjA)
- If $a_1x + b_1y + c_1z = d_1 a_2x + b_2y + c_2z = d_2 a_3x + b_3 y + c_3z = d_3$, then these equations can be written as A X = B, where:

$$A = egin{bmatrix} a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 \end{bmatrix}$$
 X = $egin{bmatrix} x \ y \ z \end{bmatrix}$ and B = $egin{bmatrix} d_1 \ d_2 \ d_3 \end{bmatrix}$

- For a square matrix A in matrix equation AX = B
 - 1. (i) $|A| \neq 0$, there exists unique solution
 - 2. (ii) |A| = 0 and (adj A) $B \neq 0$, then there exists no solution
 - 3. (iii) |A| = 0 and (adj A) B = 0, then the system may or may not be consistent.

5. Continuity and Differentiability

Definition/Properties

- A function is said to be continuous at a given point if the limit of that function at the point is equal to the value of the function at the same point.
- Properties related to the functions:
 - (i) $(f\pm g)(x)=f(x)\pm g(x)$ is continuous.
 - (ii) (f.g)(x)=f(x).g(x) is continuous.
 - (iii) f/g(x)=f(x)/g(x) (whenever $g(x)\neq 0$ g(x)≠0 is continuous.
- Chain Rule: If f = v o u, t = u (x) and if both dt/dx and dv/dx exists, then:

• df/dx=dv/dt.dt/dx

 Rolle's Theorem: If f: [a, b] → R is continuous on [a, b] and differentiable on (a, b) where as f(a) = f(b), then there exists some c in (a, b) such that f '(c) = 0. • **Mean Value Theorem:** If f : [a, b] → R is continuous on [a, b] and differentiable on (a, b). Then there exists some c in (a, b) such that

f'(c)=f(b)-f(a)/b-a

Formulas Given below are the standard derivatives:

Derivative	Formulas
d/dx(sin-1x)d/dx(sin-1x)	1/√1−x ²
$d/dx(\cos-1x)d/dx(\cos-1x)$	-1/√1-x ²
d/dx(tan-1x)d/dx(tan-1x)	1/1+x ²
d/dx(cot-1x)d/dx(cot-1x)	-1/1+x ²
d/dx(sec-1x)d/dx(sec-1x)	1/x√1−x²
d/dx(cosec-1x)d/dx(cosec-1x)	-1/x√1-x²
$d/dx(e_x)d/dx(e_x)$	e×
d/dx(logx)d/dx(logx)	1/x

6. Integrals

Definition/Properties

- Integration is the inverse process of differentiation.
 Suppose, d/dxF(x)=f(x); then we can write /jf(x)dx=F(x)+C
- Properties of indefinite integrals:
 - (i) $\int [f(x)+g(x)]dx = \int f(x)dx + \int g(x)dx$
 - (ii) For any real number k, $\int kf(x)dx = k\int f(x)dx$
 - o (iii) $\int [k_1f_1(x)+k_2f_2(x)+...+k_nf_n(x)]dx=k_1\int f_1(x)dx+k_2\int f_2(x)dx+...+k_n\int f_n(x)dx$
- First fundamental theorem of integral calculus: Let the area function be defined as: A(x)=∫a^xf(x)dx for all x≥a, where the function f is assumed to be continuous on [a, b]. Then A' (x) = f (x) for every x ∈ [a, b].
- Second fundamental theorem of integral calculus: Let f be the certain continuous function of x defined on the closed interval [a, b]; Furthermore, let's assume F another function as: d/dxF(x)=f(x) for every x falling in the domain of f; then,

$$\int_{a^{b}} f(x) dx = [F(x)+C]_{a^{b}} = F(b)-F(a)$$

Formulas – Standard Integrals

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$$
. Particularly, $\int dx = x + C$)
2. $\int \cos x \, dx = \sin x + C$
3. $\int \sin x \, dx = -\cos x + C$
4. $\int \sec^2 x \, dx = \tan x + C$
5. $\int \csc^2 x \, dx = -\cot x + C$
6. $\int \sec x \tan x \, dx = \sec x + C$
7. $\int \csc x \cot x \, dx = -\csc x + C$
8. $\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + C$
9. $\int \frac{dx}{\sqrt{1-x^2}} = -\cos^{-1}x + C$
10. $\int \frac{dx}{1+x^2} = \tan^{-1}x + C$
11. $\int \frac{dx}{1+x^2} = -\cot^{-1}x + C$
12. $\int e^x dx = e^x + C$
13. $\int a^x dx = \frac{a^x}{\log a} + C$
14. $\int \frac{dx}{x\sqrt{x^2-1}} = \sec^{-1}x + C$
15. $\int \frac{dx}{x\sqrt{x^2-1}} = -\csc^{-1}x + C$
16. $\int \frac{1}{x} \, dx = \log |x| + C$

Formulas – Partial Fractions

Partial Fraction	Formulas
$\frac{px+q}{(x-a)(x-b)}$	$rac{A}{x-a}+rac{B}{x-b}, a eq b$
$rac{px+q}{\left(x-a ight)^2}$	$rac{A}{x-a} + rac{B}{(x-b)^2}$
$rac{px^2+qx+r}{(x-a)(x-b)(x-c)}$	$\frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{x-c}$
$\frac{px^2 + qx + r}{(x-a)^2(x-b)}$	$\frac{A}{x-a} + \frac{B}{\left(x-a\right)^2} + \frac{C}{x-b}$
$\frac{px^2+qx+r}{(x-a)(x^2+bx+c)}$	$rac{A}{x-a}+rac{Bx+C}{x^2+bx+c}$

Formulas – Integration by Substitution

- 1. ∫tanxdx=log|secx|+C
- 2. ∫cotxdx=log|sinx|+C
- 3. ∫secxdx=log|secx+tanx|+C
- 4. ∫cosecxdx=log|cosecx-cotx|+C

Formulas – Integrals (Special Functions)

$$1. \int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left| \frac{x - a}{x + a} \right| + C$$

$$2. \int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left| \frac{a + x}{a - x} \right| + C$$

$$3. \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

$$4. \int \frac{dx}{\sqrt{x^2 - a^2}} = \log \left| x + \sqrt{x^2 - a^2} \right| + C$$

$$5. \int \frac{dx}{\sqrt{x^2 + a^2}} = \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

$$6. \int \frac{dx}{\sqrt{x^2 - a^2}} = \sin^{-1} \frac{x}{a} + C$$

Formulas – Integration by Parts

- The integral of the product of two functions = first function × integral of the second function – integral of {differential coefficient of the first function × integral of the second function} [f1(x).f2(x)=f1(x)]f2(x)dx-J[ddxf1(x).Jf2(x)dx]dx
- 2. $\int ex[f(x)+f'(x)]dx=\int exf(x)dx+C$

Formulas – Special Integrals

$$1. \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log \left| x + \sqrt{x^2 - a^2} \right| + C$$

$$2. \int \sqrt{x^2 + a^2} \, dx = \frac{x}{2} \sqrt{x^2 + a^2} + \frac{a^2}{2} \log \left| x + \sqrt{x^2 + a^2} \right| + C$$

$$3. \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a}{2} \sin^{-1} \frac{x}{a} + C$$

$$4. ax^2 + bx + c = a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right] = a \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{c}{a} - \frac{b^2}{4a^2} \right) \right]$$

7. Application of Integrals

The area enclosed by the curve y = f (x); x-axis and the lines x = a and x
 = b (b > a) is given by the formula:

$$Area = \int_a^b y \, dx = \int_a^b f(x) \, dx$$

 Area of the region bounded by the curve x = φ (y) as its y-axis and the lines y = c, y = d is given by the formula:

$$Area = \int_c^d x \, dy = \int_c^d \phi(y) \, dy$$

3. The area enclosed in between the two given curves y = f (x), y = g (x) and the lines x = a, x = b is given by the following formula:

 $Area = \int_a^b [f(x) - g(x)] \ dx, \ where, f(x) \geq g(x) \ in \ [a,b]$

4. If f (x) \ge g (x) in [a, c] and f (x) \le g (x) in [c, b], a < c < b, then: $Area = \int_{a}^{c} [f(x) - g(x)] dx, + \int_{c}^{b} [g(x) - f(x)] dx$

8. Vector Algebra

Definition/Properties

1. Vector is a certain quantity that has both the magnitude and the direction. The position vector of a point P (x, y, z) is given by:

$$OP \rightarrow (=\vec{r}) = xi^{+}yj^{+}zk^{-}$$

2. The scalar product of two given vectors $\vec{a} \rightarrow and \vec{b} \rightarrow baving angle \theta$ between them is defined as:

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos\theta$$

- 3. The position vector of a point R dividing a line segment joining the points P and Q whose position vectors $\vec{a} \to \vec{a} \to \vec{b} \to \vec{b} \to \vec{c}$ are respectively, in the ratio m : n is given by:
- \circ (i) internally: na⁺+mb⁺m+n
- (ii) externally: na⁻mb⁻m-n

Formulas

If two vectors $\vec{a} \rightarrow and \vec{b} \rightarrow are$ given in its component forms as $a^{-1}a^{+1$

(i)
$$\vec{a} + \vec{b} = (a_1 + b_1)\hat{i} + (a_2 + b_2)\hat{j} + (a_3 + b_3)\hat{k}$$
;
(ii) $\lambda \vec{a} = (\lambda a_1)\hat{i} + (\lambda a_2)\hat{j} + (\lambda a_3)\hat{k}$;
(iii) $\vec{a} \cdot \vec{b} = (a_1b_1) + (a_2b_2) + (a_3b_3)$
(iv) and $\vec{a} \times \vec{b} = \begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{bmatrix}$.

9. Three dimensional Geometry

Definition/Properties

- Direction cosines of a line are the cosines of the angle made by a particular line with the positive directions on coordinate axes.
- Skew lines are lines in space which are neither parallel nor intersecting. These lines lie in separate planes.
- If I, m and n are the direction cosines of a line, then I² + m² + n² = 1.

Formulas

1. The Direction cosines of a line joining two points P $(x_1 \mbox{ , } y_1 \mbox{ , } z_1)$ and Q $(x_2$

, y₂ , z₂) are
$$\frac{x_2-x_1}{PQ}$$
 , $\frac{y_2-y_1}{PQ}$, $\frac{z_2-z_1}{PQ}$ where
PQ= $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$

- 2. Equation of a line through a point (x₁ , y₁ , z₁) and having direction cosines I, m, n is: $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}$
- 3. The vector equation of a line which passes through two points whose position vectors \vec{a} and \vec{b} is $\vec{r} = \vec{a} + \lambda(\vec{b} \vec{a})$
- 4. The shortest distance between $\vec{r} = \vec{a_1} + \lambda \vec{b_1}$ and $\vec{r} = \vec{a_2} + \mu \vec{b_2}$ is: $\begin{vmatrix} (\vec{b_1} \times \vec{b_2}) \cdot (\vec{a_2} - \vec{a_1}) \\ |\vec{b_1} \times \vec{b_2}| \end{vmatrix}$
- 5. The distance between parallel lines $\vec{r} = \vec{a_1} + \lambda \, \vec{b}$ and $\vec{r} = \vec{a_2} + \mu \, \vec{b}$ is $\left| \frac{\vec{b} \times (\vec{a_2} \vec{a_1})}{|\vec{b}|} \right|$
- 6. The equation of a plane through a point whose position vector is $ec{a}$ and perpendicular to the vector $ec{N}$ is $(ec{r}-ec{a})$. $ec{N}=0$
- 7. Equation of a plane perpendicular to a given line with direction ratios A, B, C and passing through a given point (x_1, y_1, z_1) is A $(x - x_1) + B (y - y_1) + C (z - z_1) = 0$
- 8. The equation of a plane passing through three non-collinear points (x_1, y_1, z_1) ; (x_2, y_2, z_2) and (x_3, y_3, z_3) is:

$$egin{array}{c|ccccc} x-x_1 & y-y_1 & z-z_1 \ x_2-x_1 & y_2-y_1 & z_2-z_1 \ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{array} = 0$$

- 9. The two lines $\vec{r} = \overrightarrow{a_1} + \lambda \overrightarrow{b_1}$ and $\vec{r} = \overrightarrow{a_2} + \mu \overrightarrow{b_2}$ are coplanar if: $(\overrightarrow{a_2} - \overrightarrow{a_1}) \cdot (\overrightarrow{b_1} \times \overrightarrow{b_2}) = 0$
- 10. The angle ϕ between the line $ec{r}=ec{a}+\lambda\,ec{b}$ and the plane $ec{r}$. $\hat{n}=d$ is given by:

$$sin\,\phi=\left|rac{ec{b}\,.\,\hat{n}}{|ec{b}||\hat{n}|}
ight|$$

11. The angle θ between the planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + C_2z + D_2 = 0$ is given by:

$$\cos heta = igg| rac{A_1 \ A_2 + B_1 \ B_2 + C_1 \ C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \ \sqrt{A_2^2 + B_2^2 + C_2^2}} igg|$$

- 12. The distance of a point whose position vector is $ec{a}$ from the plane $ec{r}$. $\hat{n}=d$ is given by: $|d-ec{a}$. $\hat{n}|$
- 13. The distance from a point (x_1, y_1, z_1) to the plane Ax + By + Cz + D = 0: $|A_{T_1}+B_{T_2}+C_{T_2}+D|$

$$\left|\frac{Ax_1+By_1+Cz_1+D}{\sqrt{A^2+B^2+C^2}}\right|$$

10. **Probability**

Definition/Properties

 The conditional probability of an event E holds the value of the occurrence of the event F as:

$$P(E \,|\, F) = rac{E \cap F}{P(F)} \ , \ P(F)
eq 0$$

2. Total Probability: Let E_1 , E_2 , ..., E_n be the partition of a sample space and A be any event; then,

 $P(A) = P(E_1) P (A|E_1) + P (E_2) P (A|E_2) + ... + P (E_n) . P(A|E_n)$

3. Bayes Theorem: If E₁ , E₂ , , E_n are events contituting in a sample space S; then,

$$P(E_i \mid A) = rac{P(E_i) \ P(A \mid E_i)}{\sum_{j=1}^n P(E_j) \ P(A \mid E_j)}$$

4. Var (X) = E $(X^2) - [E(X)]^2$