CLASS - 12

CHAPTER -11 Three Dimensional Geometry

Direction Cosines of a Line: If the directed line OP makes angles α , β , and γ with positive X-axis, Y-axis and Z-axis respectively, then $\cos \alpha$, $\cos \beta$, and $\cos \gamma$, are called direction cosines of a line. They are denoted by I, m, and n. Therefore, I = $\cos \alpha$, m = $\cos \beta$ and n = $\cos \gamma$. Also, sum of squares of direction cosines of a line is always 1,

i.e. $l^2 + m^2 + n^2 = 1$ or $cos^2 \alpha + cos^2 \beta + cos^2 \gamma = 1$

Note: Direction cosines of a directed line are unique.

Direction Ratios of a Line: Number proportional to the direction cosines of a line, are called direction ratios of a line.

(i) If a, b and c are direction ratios of a line, then l/a = m/b = n/c

(ii) If a, b and care direction ratios of a line, then its direction cosines are

$$l = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}}, m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}}, n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

(iii) Direction ratios of a line PQ passing through the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ are $x_2 - x_1$, $y_2 - y_1$ and $z_2 - z_1$ and direction cosines are

$$\frac{x_2 - x_1}{|\overrightarrow{PQ}|},$$

$$\frac{y_2 - y_1}{|\overrightarrow{PQ}|}, \frac{z_2 - z_1}{|\overrightarrow{PQ}|}.$$

Note:

(i) Direction ratios of two parallel lines are proportional.

(ii) Direction ratios of a line are not unique.

Straight line: A straight line is a curve, such that all the points on the line segment joining any two points of it lies on it.

Equation of a Line through a Given Point and parallel to a given vector \vec{b} Vector form $\vec{r} = \vec{a} + \lambda \vec{b}$ where, $\vec{a} = Position$ vector of a point through which the line is passing $\vec{b} = A$ vector parallel to a given line

Cartesian form

 $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$

where, (x_1, y_1, z_1) is the point through which the line is passing through and a, b, c are the direction ratios of the line.

If I, m, and n are the direction cosines of the line, then the equation of the line is

 $\frac{x-x_1}{l} = \frac{y-y_1}{m} = \frac{z-z_1}{n}.$

Remember point: Before we use the DR's of a line, first we have to ensure that coefficients of x, y and z are unity with a positive sign.

Equation of Line Passing through Two Given Points

Vector form: $\vec{r} = \vec{a} + \lambda(\vec{b} - \vec{a}), \lambda \in \mathbb{R}$, where a and b are the position vectors of the points through which the line is passing.

Cartesian form

$$\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$$

where, (x_1, y_1, z_1) and (x_2, y_2, z_2) are the points through which the line is passing.

Angle between Two Lines

Vector form: Angle between the lines $\vec{r} = a1 \rightarrow +\lambda b1 \rightarrow and \vec{r} = a2 \rightarrow +\mu b2 \rightarrow is$ given as

$$\cos\theta = \begin{vmatrix} \overrightarrow{b_1 \cdot b_2} \\ \overrightarrow{b_1 | \cdot | b_2} \end{vmatrix}$$

Cartesian form If
$$\theta$$
 is the angle between the lines $\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$ and $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$, then $\cos \theta = \left| \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}} \right|$
or $\sin \theta = \frac{\sqrt{(a_1 b_2 - a_2 b_1)^2 + (b_1 c_2 - b_2 c_1)^2 + (c_1 a_2 - c_2 a_1)^2}}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$

Also, angle (θ) between two lines with direction cosines, l_1, m_1, n_1 and l_2, m_2, n_2 is given by $\cos \theta = l_1 l_2 + m_1 m_2 + n_1 n_2$

or
$$\sin\theta = \sqrt{(m_1n_2 - m_2n_1)^2 + (n_1l_2 - n_2l_1)^2 + (l_1m_2 - l_2m_1)^2}$$

Condition of Perpendicularity: Two lines are said to be perpendicular, when in vector form $b1 \rightarrow b2 \rightarrow =0$; in cartesian form $a_1a_2 + b_1b_2 + c_1c_2 = 0$

or $I_1I_2 + m_1m_2 + n_1n_2 = 0$ [direction cosine form]

Condition that Two Lines are Parallel: Two lines are parallel, when in vector form $b1 \rightarrow b2 \rightarrow = |||b1 \rightarrow ||||||b2 \rightarrow |||$; in cartesian form a1/a2=b1/b2=c1/c2 or |1/l2=m1/m2=n1/n2 [direction cosine form]

Shortest Distance between Two Lines: Two non-parallel and non-intersecting straight lines, are called skew lines.

For skew lines, the line of the shortest distance will be perpendicular to both the lines.

Vector form: If the lines are $\vec{r} = a1 \rightarrow +\lambda b1 \rightarrow and \vec{r} = a2 \rightarrow +\lambda b2 \rightarrow$. Then, shortest distance

$$d = \left| \frac{(\overrightarrow{b_1} \times \overrightarrow{b_2}) \cdot (\overrightarrow{a_2} - \overrightarrow{a_1})}{|\overrightarrow{b_1} \times \overrightarrow{b_2}|} \right|$$

where $a2 \rightarrow$, $a1 \rightarrow$ are position vectors of point through which the line is passing and $b1 \rightarrow$, $b2 \rightarrow$ are the vectors in the direction of a line.

Cartesian form: If the lines are

$$\frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1} \text{ and } \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2}.$$

Then, shortest distance,

$$d = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}$$
$$\frac{1}{\sqrt{(b_1c_2 - b_2c_1)^2 + (c_1a_2 - c_2a_1)^2 + (a_1b_2 - a_2b_1)^2}}$$

Distance between two Parallel Lines: If two lines l_1 and l_2 are parallel, then they are coplanar. Let the lines be $\vec{r} = a1 \rightarrow +\lambda \vec{b}$ and $\vec{r} = a2 \rightarrow +\mu \vec{b}$, then the distance between parallel lines is

$$\frac{\overrightarrow{b} \times (\overrightarrow{a_2} - \overrightarrow{a_1})}{\overrightarrow{b}}$$

Note: If two lines are parallel, then they both have same DR's.

Distance between Two Points: The distance between two points P (x_1 , y_1 , z_1) and Q (x_2 , y_2 , z_2) is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Mid-point of a Line: The mid-point of a line joining points A (x_1, y_1, z_1) and B (x_2, y_2, z_2) is given by

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, \frac{z_1 + z_2}{2}\right)$$

Plane: A plane is a surface such that a line segment joining any two points of it lies wholly on it. A straight line which is perpendicular to every line lying on a plane is called a normal to the plane.

Equations of a Plane in Normal form

Vector form: The equation of plane in normal form is given by $\vec{r} \cdot \vec{n} = d$, where \vec{n} is a vector which is normal to the plane.

Cartesian form: The equation of the plane is given by ax + by + cz = d, where a, b and c are the direction ratios of plane and d is the distance of the plane from origin.

Another equation of the plane is lx + my + nz = p, where l, m, and n are direction cosines of the perpendicular from origin and p is a distance of a plane from origin.

Note: If d is the distance from the origin and l, m and n are the direction cosines of the normal to the plane through the origin, then the foot of the perpendicular is (ld, md, nd).

Equation of a Plane Perpendicular to a given Vector and Passing Through a given Point

Vector form: Let a plane passes through a point A with position vector \vec{a} and perpendicular to the vector \vec{n} , then $(\vec{r} - \vec{a}) \cdot \vec{n} = 0$

This is the vector equation of the plane.

Cartesian form: Equation of plane passing through point (x_1, y_1, z_1) is given by a $(x - x_1) + b (y - y_1) + c (z - z_1) = 0$ where, a, b and c are the direction ratios of normal to the plane.

Equation of Plane Passing through Three Non-collinear Points

Vector form: If \vec{a} , \vec{b} and \vec{c} are the position vectors of three given points, then equation of a plane passing through three non-collinear points is $(\vec{r} - \vec{a}) \cdot \{(\vec{b} - \vec{a}) \times (\vec{c} - \vec{a})\}=0$.

Cartesian form: If (x_1, y_1, z_1) (x_2, y_2, z_2) and (x_3, y_3, z_3) are three non-collinear points, then equation of the plane is

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0$$

If above points are collinear, then

x_1	y_1	z_1
x_2	y_2	$z_2 = 0.$
x_3	<i>y</i> ₃	z ₃

Equation of Plane in Intercept Form: If a, b and c are x-intercept, y-intercept and z-intercept, respectively made by the plane on the coordinate axes, then equation of plane is x/a+y/b+z/c=1

Equation of Plane Passing through the Line of Intersection of two given Planes

Vector form: If equation of the planes are $\vec{r} \cdot n1 \rightarrow = d1$ and $\vec{r} \cdot n2 \rightarrow = d2$, then equation of any plane passing through the intersection of planes is

 $\vec{r} \cdot (n1 \rightarrow +\lambda n2 \rightarrow) = d1 + \lambda d2$

where, λ is a constant and calculated from given condition.

Cartesian form: If the equation of planes are $a_1x + b_1y + c_1z = d_1$ and $a_2x + b_2y + c_2z = d_2$, then equation of any plane passing through the intersection of planes is $a_1x + b_1y + c_1z - d_1 + \lambda (a_2x + b_2y + c_2z - d_2) = 0$

where, $\boldsymbol{\lambda}$ is a constant and calculated from given condition.

Coplanarity of Two Lines

Vector form: If two lines $\vec{r} = a1 \rightarrow +\lambda b1 \rightarrow and \vec{r} = a2 \rightarrow +\mu b2 \rightarrow are coplanar, then$

 $(a2 \rightarrow -a1 \rightarrow) \cdot (b2 \rightarrow -b1 \rightarrow)=0$

Cartesian form If two lines
$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$$
 and $\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$ are coplanar, then $\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = 0.$

Angle between Two Planes: Let θ be the angle between two planes.

Vector form: If $n1 \rightarrow and n2 \rightarrow are normals to the planes and <math>\theta$ be the angle between the planes $\vec{r} \cdot n1 \rightarrow = d1$ and $\vec{r} \cdot n2 \rightarrow = d2$, then θ is the angle between the normals to the planes drawn from some common points.

$$\cos \theta = \frac{\begin{vmatrix} \overrightarrow{n_1} \cdot \overrightarrow{n_2} \\ \overrightarrow{n_1} & \overrightarrow{n_2} \end{vmatrix}}{\begin{vmatrix} \overrightarrow{n_1} & | & \overrightarrow{n_2} \end{vmatrix}}.$$

Note: The planes are perpendicular to each other, if $n1 \rightarrow \cdot n2 \rightarrow =0$ and parallel, if $n1 \rightarrow \cdot n2 \rightarrow =||n1 \rightarrow ||||n2 \rightarrow ||$

Cartesian form: If the two planes are $a_1x + b_1y + c_1z = d_1$ and $a_2x + b_2y + c_2z = d_2$, then

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}.$$

Note: Planes are perpendicular to each other, if $a_1a_2 + b_1b_2 + c_1c_2 = 0$ and planes are parallel, if $a_1a_2=b_1b_2=c_1c_2$

Distance of a Point from a Plane

Vector form: The distance of a point whose position vector is a³ from the plane

 $\vec{r} \cdot n^{=} dis |d-a \cdot n^{|}$

Note:

(i) If the equation of the plane is in the form $\vec{r} \cdot \vec{n} = d$, where \vec{n} is normal to the plane, then the perpendicular distance is $||\vec{a} \cdot \vec{n} - d|||\vec{n}||$ (ii) The length of the perpendicular from origin O to the plane $\vec{r} \cdot \vec{n} = dis|d||\vec{n}||$: $|\vec{a} = 0|$

Cartesian form: The distance of the point (x_1, y_1, z_1) from the plane Ax + By + Cz = D is

$$d = \frac{Ax_1 + By_1 + Cz_1 - D}{\sqrt{A^2 + B^2 + C^2}}$$

Angle between a Line and a Plane

Vector form: If the equation of line is $\vec{r} = \vec{a} + \lambda \vec{b}$ and the equation of plane is $\vec{r} \cdot \vec{n} = d$, then the angle θ between the line and the normal to the plane is

$$\cos\theta = \frac{\overrightarrow{b} \cdot \overrightarrow{n}}{|\overrightarrow{b}| |\overrightarrow{n}|}$$

and so the angle Φ between the line and the plane is given by 90° – θ , i.e. sin(90° – θ) = cos θ

$$\sin\phi = \frac{\overrightarrow{b} \cdot \overrightarrow{n}}{|\overrightarrow{b}| |\overrightarrow{n}|}$$

Cartesian form: If a, b and c are the DR's of line and lx + my + nz + d = 0 be the equation of plane, then

$$\sin\theta = \frac{al + bm + cn}{\sqrt{a^2 + b^2 + c^2}\sqrt{l^2 + m^2 + n^2}}$$

If a line is parallel to the plane, then al + bm + cn = 0 and if line is perpendicular to the plane, then al=bm=cn

Remember Points

(i) If a line is parallel to the plane, then normal to the plane is perpendicular to the line. i.e. $a_1a_2 + b_1b_2 + c_1c_2 = 0$

(ii) If a line is perpendicular to the plane, then DR's of line are proportional to the normal of the plane.

i.e. a1/a2=b1/b2=c1/c2

where, a_1 , b_1 and c_1 are the DR's of a line and a_2 , b_2 and c_2 are the DR's of normal to the plane.