CBSE Class 10 Maths Solutions

QUESTION PAPER CODE 30/1

30/1

EXPECTED ANSWER/VALUE POINTS

SECTION A

1. x = 3 is one root of the equation

$$9 - 6k - 6 = 0$$

$$\Rightarrow k = \frac{1}{2}$$

HCF of 2 and 4 is 2.
$$\frac{1}{2}$$

3. OP =
$$\sqrt{x^2 + y^2}$$

4.
$$a + 6(-4) = 4$$

$$\Rightarrow$$
 a = 28

5.
$$\cos 67^{\circ} = \sin 23^{\circ}$$

 $\cos^2 67^{\circ} - \sin^2 23 = 0$

6.
$$\frac{\text{ar } \Delta ABC}{\text{ar } \Delta POR} = \frac{AB^2}{PO^2}$$

$$=\left(\frac{1}{3}\right)^2=\frac{1}{9}$$

SECTION B

7. Let us assume $5 + 3\sqrt{2}$ is a rational number.

$$\therefore 5 + 3\sqrt{2} = \frac{p}{q} \text{ where } q \neq 0 \text{ and } p \text{ and } q \text{ are integers.}$$

$$\Rightarrow \sqrt{2} = \frac{p - 5q}{3q}$$

$$\Rightarrow \sqrt{2}$$
 is a rational number as RHS is rational

This contradicts the given fact that $\sqrt{2}$ is irrational.

Hence
$$5 + 3\sqrt{2}$$
 is an irrational number.

8. AB = DC and BC = AD

$$\Rightarrow x + y = 30$$
and $x - y = 14$

1

Solving to get x = 22 and y = 8.

1/2+1/2

9. S = 3 + 6 + 9 + 12 + ... + 24

$$= 3(1 + 2 + 3 + ... + 8)$$

1/2

$$=3\times\frac{8\times9}{2}$$

1

$$= 108$$

1/

10. Let AP : PB = k : 1

$$\therefore \frac{6k+2}{k+1} = 4$$

A(2,3) P(4,m) B(6,-3)

1/2

1

$$\Rightarrow$$
 k = 1, ratio is 1:1

Hence
$$m = \frac{-3+3}{2} = 0$$

1/2

11. Total number of possible outcomes = 36

(i) Doublets are (1, 1) (2, 2) (3, 3) (4, 4) (5, 5) (6, 6)

Total number of doublets = 6

1/2

$$\therefore \text{ Prob (getting a doublet)} = \frac{6}{36} \text{ or } \frac{1}{6}$$

1/2

(ii) Favourable outcomes are (4, 6) (5, 5) (6, 4) i.e., 3

1/2

$$\therefore$$
 Prob (getting a sum 10) = $\frac{3}{36}$ or $\frac{1}{12}$

1/2

12. Total number of outcomes = 98

(i) Favourable outcomes are 8, 16, 24, ..., 96 i.e., 12

1/2

 $\therefore \text{ Prob (integer is divisible by 8)} = \frac{12}{98} \text{ or } \frac{6}{49}$

1

(ii) Prob (integer is not divisible by 8) = $1 - \frac{6}{49}$

$$=\frac{43}{49}$$

1/2

1

1

1

1

1

1

SECTION C

13. $404 = 2 \times 2 \times 101 = 2^2 \times 101$

$$96 = 2 \times 2 \times 2 \times 2 \times 2 \times 3 = 2^5 \times 3$$

 \therefore HCF of 404 and 96 = $2^2 = 4$

LCM of 404 and
$$96 = 101 \times 2^5 \times 3 = 9696$$

 $HCF \times LCM = 4 \times 9696 = 38784$

Also
$$404 \times 96 = 38784$$

Hence HCF × LCM = Product of 404 and 96.

14. $p(x) = 2x^4 - 9x^3 + 5x^2 + 3x - 1$

 $2 + \sqrt{3}$ and $2 - \sqrt{3}$ are zeroes of p(x)

:.
$$p(x) = (x-2-\sqrt{3})(x-2+\sqrt{3}) \times g(x)$$

$$=(x^2-4x+1) g(x)$$

$$(2x^4 - 9x^3 + 5x^2 + 3x - 1) \div (x^2 - 4x + 1) = 2x^2 - x - 1$$

$$g(x) = 2x^2 - x - 1$$

$$=(2x+1)(x-1)$$

Therefore other zeroes are $x = -\frac{1}{2}$ and x = 1

 \therefore Therefore all zeroes are $2+\sqrt{3}$, $2-\sqrt{3}$, $-\frac{1}{2}$ and 1

(4) 30/1

15.

ABCD is a parallelogram

: diagonals AC and BD bisect each other

Therefore

1/2

$$\Rightarrow \left(\frac{a+1}{2}, \frac{2}{2}\right) = \left(\frac{-2+4}{2}, \frac{b+1}{2}\right)$$

1

$$\Rightarrow \frac{a+1}{2} = 1$$
 and $\frac{b+1}{2} = 1$

$$\Rightarrow$$
 a = 1, b = 1. Therefore length of sides are $\sqrt{10}$ units each.

1/2+1

OR

Area of quad ABCD =
$$Ar \triangle ABD + Ar \triangle BCD$$

1/2

Area of
$$\triangle ABD = \frac{1}{2} | (-5)(-5-5) + (-4)(5-7) + (4)(7+5) |$$

= 53 sq units

1

Area of
$$\triangle BCD = \frac{1}{2} | (-4)(-6-5) + (-1)(5+5) + 4(-5+6) |$$

1

Hence area of quad. ABCD =
$$53 + 19 = 72$$
 sq units

= 19 sq units

1/2

16. Let the usual speed of the plane be x km/hr.

$$\therefore \frac{1500}{x} - \frac{1500}{x+100} = \frac{30}{60}$$

1

$$\Rightarrow$$
 $x^2 + 100x - 300000 = 0$

 $\Rightarrow x^2 + 600x - 500x - 300000 = 0$

 \Rightarrow (x + 600)(x - 500) = 0

1

$$x \neq -600$$
, $\therefore x = 500$

1/2

1/2

17.

Let the side of the square be 'a' units

$$AC^2 = a^2 + a^2 = 2a^2$$

$$\Rightarrow$$
 AC = $\sqrt{2}$ a units

Area of equilateral
$$\triangle BCF = \frac{\sqrt{3}}{4}a^2$$
 sq.u $\frac{1}{2}$

Area of equilateral
$$\triangle ACE = \frac{\sqrt{3}}{4} (\sqrt{2} a)^2 = \frac{\sqrt{3}}{2} a^2 \text{ sq.u}$$

$$\Rightarrow$$
 Area ΔBCF = $\frac{1}{2}$ Ar ΔACE

OR

Let $\triangle ABC \sim \triangle PQR$.

$$\therefore \frac{\text{ar } \Delta ABC}{\text{ar } \Delta PQR} = \frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$$

Given ar $\triangle ABC = ar \triangle PQR$

$$\Rightarrow \frac{AB^2}{PQ^2} = 1 = \frac{BC^2}{QR^2} = \frac{AC^2}{PR^2}$$

$$\Rightarrow$$
 AB = PQ, BC = QR, AC = PR

$$\Rightarrow$$
 Therefore $\triangle ABC \cong \triangle PQR$. (sss congruence rule)

18. Correct given, To prove, Figure, Construction

 $\frac{1}{2} \times 4 = 2$

1

1

Correct proof

19. $4 \tan \theta = 3$

$$\Rightarrow$$
 $\tan \theta = \frac{3}{4}$

$$\Rightarrow \sin \theta = \frac{3}{5} \text{ and } \cos \theta = \frac{4}{5}$$

1/2+1/2

$$\therefore \frac{4\sin\theta - \cos\theta + 1}{4\sin\theta + \cos\theta - 1} = \frac{4 \times \frac{3}{5} - \frac{4}{5} + 1}{4 \times \frac{3}{5} + \frac{4}{5} - 1}$$

$$=\frac{13}{11}$$

(6) 30/1

Auch

$$\tan 2A = \cot (A - 18^{\circ})$$

$$\Rightarrow$$
 90° - 2A = A - 18°

1

$$\Rightarrow$$
 3A = 108°

$$\Rightarrow$$
 A = 36°

20. Radius of each arc drawn = 6 cm

Area of one quadrant = $(3.14) \times \frac{36}{4}$

Area of four quadrants =
$$3.14 \times 36 = 113.04 \text{ cm}^2$$

1

Area of square ABCD =
$$12 \times 12 = 144 \text{ cm}^2$$

1

Hence Area of shaded region = 144 - 113.04

$$= 30.96 \text{ cm}^2$$

1/2

21. Total surface Area of article = CSA of cylinder + CSA of 2 hemispheres

CSA of cylinder = $2\pi rh$

$$= 2 \times \frac{22}{7} \times 3.5 \times 10$$

1

$$= 220 \text{ cm}^2$$

- 2

$$= 154 \text{ cm}^2$$

OR

1

Total surface Area of article = 220 + 154

$$= 374 \text{ cm}^2$$

Surface Area of two hemispherical scoops = $4 \times \frac{22}{7} \times 3.5 \times 3.5$

1

Radius of conical heap = 12 m

1/2

Volume of rice =
$$\frac{1}{3} \times \frac{22}{7} \times 12 \times 12 \times 3.5 \text{ m}^3$$

$$= 528 \text{ m}^3$$

1

Area of canvas cloth required = $\pi r I$

Variation of the state of the s

$$l = \sqrt{12^2 + (3.5)^2} = 12.5 \text{ m}$$

1/2

$$\therefore \text{ Area of canvas required} = \frac{22}{7} \times 12 \times 12.5$$

1

 $= 471.4 \text{ m}^2$

cf

$$\frac{N}{2} = \frac{280}{2} = 140$$

Median class is 10-15

Median =
$$I + \frac{h}{f} \left(\frac{N}{2} - C \right)$$

= $10 + \frac{5}{133} (140 - 49)$
= $10 + \frac{5 \times 91}{133}$
= 13.42

a. ichi

1

1

Median salary is Rs 13.42 thousand or Rs 13420 (approx)

1

SECTION D

23. Let the speed of stream be x km/hr.

The speed of the boat upstream = (18 - x) km/hr and Speed of the boat downstream = (18 + x) km/hr

1

1

As given in the question,

$$\frac{24}{18-x} - \frac{24}{18+x} = 1$$

$$\Rightarrow x^2 + 48x - 324 = 0$$

$$\Rightarrow (x + 54)(x - 6) = 0$$

$$x \neq -54, \quad \therefore x = 6$$

$$\therefore \text{ Speed of the stream} = 6 \text{ km/hr.}$$

OR

Let the original average speed of train be x km/hr.

Therefore
$$\frac{63}{x} + \frac{72}{x+6} = 3$$

$$\Rightarrow \quad x^2 - 39x - 126 = 0$$

$$\Rightarrow (x-42)(x+3) = 0$$

$$x \neq -3 \quad \therefore x = 42$$

24. Let the four consecutive terms of the A.P. be

$$a - 3d$$
, $a - d$, $a + d$, $a + 3d$.

By given conditions

$$(a-3d) + (a-d) + (a+d) + (a+3d) = 32$$

1 -

$$\Rightarrow$$
 4a = 32

and
$$\frac{(a-3d)(a+3d)}{(a-d)(a+d)} = \frac{7}{15}$$

$$\Rightarrow$$
 8a² = 128d²

$$\Rightarrow$$
 $d^2 = 4$

1/2

1

1

 \Rightarrow d = ± 2

... Numbers are 2, 6, 10, 14 or 14, 10, 6, 2.

25.

Draw AE

BC

ΔAEB ≅ ΔAEC (RHS congruence rule)

$$\therefore BE = EC = \frac{1}{2}BC = \frac{1}{2}AB$$

Let AB = BC = AC = x

Now BE =
$$\frac{x}{2}$$
 and DE = BE - BD

$$=\frac{x}{2}-\frac{x}{3}$$

$$=\frac{x}{6}$$

Now
$$AB^2 = AE^2 + BE^2$$
 ...(1)
and $AD^2 = AE^2 + DE^2$...(2)

From (1) and (2) $AB^2 - AD^2 = BE^2 - DE^2$

$$\Rightarrow x^2 - AD^2 = \left(\frac{x}{2}\right)^2 - \left(\frac{x}{6}\right)^2$$

$$\Rightarrow AD^2 = x^2 - \frac{x^2}{4} + \frac{x^2}{36}$$

$$\Rightarrow$$
 AD² = $\frac{28}{36}$ x²

$$\Rightarrow$$
 9AD² = 7AB²

OR

Given, to Prove, Construction and Figure

 $\frac{1}{2} \times 4 = 2$

Correct Proof

2

1

26. Correct Construction of AABC

2

Correct construction of similar to AABC.

100

2

27. LHS =
$$\frac{\sin A - 2\sin^3 A}{2\cos^3 A - \cos A}$$

$$=\frac{\sin A(1-2\sin^2 A)}{\cos A(2\cos^2 A-1)}$$

$$= \frac{\sin A(1 - 2(1 - \cos^2 A))}{\cos A(2\cos^2 A - 1)}$$

$$= \tan A \frac{(2\cos^2 A - 1)}{(2\cos^2 A - 1)}$$

$$= \tan A = RHS$$

28. Here $r_1 = 15$ cm, $r_2 = 5$ cm and h = 24 cm

(i) Area of metal sheet = CSA of the bucket + area of lower end

$$= \pi l(\mathbf{r}_1 + \mathbf{r}_2) + \pi \mathbf{r}_2^2$$

1

1

1

1

where
$$l = \sqrt{24^2 + (15 - 5)^2} = 26 \text{ cm}$$

 \therefore Surface area of metal sheet = 3.14(26 × 20 + 25) cm²

$$= 1711.3 \text{ cm}^2$$

We should avoid use of plastic because it is non-degradable or similar value.

29.

130° 145° B

Figure

Let AB be the tower and ships are at points C and D.

$$\tan 45^\circ = \frac{AB}{BC}$$

$$\Rightarrow \frac{AB}{BC} = 1$$

$$\Rightarrow$$
 AB = BC

Also tan
$$30^{\circ} = \frac{1}{\sqrt{3}} = \frac{AB}{BC + CD}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{AB}{AB + CD}$$

$$\Rightarrow$$
 AB + CD = $\sqrt{3}$ AB

$$\Rightarrow CD = AB(\sqrt{3} - 1)$$
= 100 × (1.732 - 1)
= 73.2 m.

(11) 30/1

				20//		
30.	Class	x	f	30/1 fx		
	11–13	12	3	36		
	13–15	14	6	84		
	15-17	16	9	144		
	17–19	18	13	234		
	19–21	20	f	20f		
	21–23	22	5	110	For x	1/2
	23-25	24	4	96	Σf	1/2
			40 +f	704 + 20f	Σf_X	1
	Mean	$n = 18 = \frac{704}{40}$	+ 20f + f			1
	\Rightarrow 720 + 18f = 704 + 20f					
	\Rightarrow $f = 8$					1
				OR		
	Cumulative	frequency dis	tribution table of	f less than type is		
	12010000000					

Daily income	Cumulative frequency	
Less than 100	0	
Less than 120	12	
Less than 140	26	
Less than 160	34	
Less than 180	40	
Less than 200	50	11/2

