<u>CLASS – 10</u>

CHAPTER -8 Trigonometry

Trigonometry Ratios

Opposite & Adjacent Sides in a Right Angled Triangle

In the \triangle ABC right-angled at B, BC is the side opposite to \angle A, AC is the hypotenuse and AB is the side adjacent to \angle A.

Trigonometric Ratios

For the right \triangle ABC, right-angled at \angle B, the trigonometric ratios of the \angle A are as follows:

- sin A=opposite side/hypotenuse=BC/AC
- cos A=adjacent side/hypotenuse=AB/AC
- tan A=opposite side/adjacent side=BC/AB
- cosec A=hypotenuse/opposite side=AC/BC
- sec A=hypotenuse/adjacent side=AC/AB
- cot A=adjacent side/opposite side=AB/BC

Visualization of Trigonometric Ratios Using a Unit Circle

Draw a circle of the unit radius with the origin as the centre. Consider a line segment OP joining a point P on the circle to the centre which makes an angle θ with the x-axis. Draw a perpendicular from P to the x-axis to cut it at Q.

- $sin\theta = PQ/OP = PQ/1 = PQ$
- cosθ=OQ/OP=OQ/1=OQ

- tanθ=PQ/OQ=sinθ/cosθ
- cosecθ=OP/PQ=1/PQ
- secθ=OP/OQ=1/OQ
- cotθ=OQ/PQ=cosθ/sinθ

Visualisation of Trigonometric Ratios Using a Unit Circle

Relation between Trigonometric Ratios

- $\csc \theta = 1/\sin \theta$
- $\sec \theta = 1/\cos \theta$
- $\tan \theta = \sin \theta / \cos \theta$
- $\cot \theta = \cos \theta / \sin \theta = 1 / \tan \theta$

Trigonometric Ratios of Specific Angles

Range of Trigonometric Ratios from 0 to 90 degrees

For 0°≤θ≤90°,

- 0≤sinθ≤1
- 0≤cosθ≤1
- 0≤tanθ<∞
- 1≤secθ<∞
- 0≤cotθ<∞
- 1≤cosecθ<∞

tan θ and sec θ are not defined at 90°. cot θ and cosec θ are not defined at 0°.

Variation of trigonometric ratios from 0 to 90 degrees

As θ increases from 0° to 90°

- $\sin \theta$ increases from 0 to 1
- $\cos \theta$ decreases from 1 to 0
- $\tan \theta$ increases from 0 to ∞
- cosec θ decreases from ∞ to 1
- sec θ increases from 1 to ∞
- $\cot \theta$ decreases from ∞ to 0

Standard values of Trigonometric ratios

∠A	0°	30°	45°	60°	90°
sin A	0	1/2	1/V2	√3/2	1
cos A	1	√3/2	1/V2	1/2	0
tan A	0	1/V3	1	√3	not defined
cosec A	not defined	2	√2	2/√3	1
sec A	1	2/\3	√2	2	not defined
cot A	not defined	√3	1	1/V3	0

Trigonometric Ratios of Complementary Angles

Complementary Trigonometric ratios

If θ is an acute angle, its complementary angle is $90\circ-\theta$. The following relations hold true for trigonometric ratios of complementary angles.

- $\sin(90^\circ \theta) = \cos \theta$
- cos (90 θ) = sin θ
- tan (90°- θ) = cot θ
- cot (90° θ) = tan θ
- cosec (90°- θ) = sec θ
- sec (90°- θ) = cosec θ

Trigonometric Identities

- $\sin^2\theta + \cos^2\theta = 1$
- $1+\cot^2\theta=\csc^2\theta$
- $1+\tan^2\theta=\sec^2\theta$